Electron Configurations

And Orbital Diagrams

the electron density in an electron wave

90% of the electron density is inside the two lobes drawn on the electron wave

these balloons represent the region of space which contains 90% of the electron density for this particular electron wave

Principles for Filling Orbitals

Writing electron configurations –

Aufbau principle

Electrons are added one at a time to the lowest energy levels

lowest energy levels available until all the electrons have been accounted for –

 2 electrons per orbital

Carbon: $1s^2 2s^2 2p^2$

(up to 6 electrons can fit in a psublevel, 2 in each of 3 orbitals

Lower energy

The Periodic Table and Predicted Orbital Configurations

- Representative s-block elements
 - Transition metals

Representative *p*-block elements

Another way to show an Aufbau diagram:

From Conceptual Chemistry, Second Edition by John Suchocki. Copyright © 2004 Benjamin Cummings, a division of Pearson Education.

Two Other Rules for Filling Orbitals:

- Pauli Exclusion Principle Electrons must have opposite spins to occupy the same orbital.
- Hund's Rule: Orbitals must be filled in a way that gives the maximum number of unpaired electrons.
 - By placing electrons in different orbitals, electronelectron repulsions are minimized.

Using Hund's Rule and the Pauli Exclusion Principle

Copyright © 2005 Pearson Prentice Hall, Inc.

2 mistakes

What is wrong with these?

Copyright © 2005 Pearson Prentice Hall, Inc.

Abbreviated Electron Configurations

- Highlights Valence electrons
- The preceding noble gas symbol in brackets followed by the rest of the configuration.

For Example:

Sodium [Ne] 3s¹

Fluorine [He} 2s² 2p⁵

Electronic Classification

- Core e⁻: complete the previously filled noble gas
- Valence e⁻: are in the highest energy level outside the noble gas core. Involved in bonding.
- **Pseudo-valence e-** : are outside the noble gas core in lower energy levels
 - contribute to shielding
 - occasionally take part in bonding

Atomic number	Symbol	Electron configuration	Atomic Symbol number		Electron configuration			
1	н	1 <i>s</i> ¹	37	Rb	[Kr]5 <i>s</i> ¹			
2	He	1 <i>s</i> ²	38	Sr	[Kr]5 <i>s</i> ²			
3	Li	[He]2s ¹	39	Y	$[Kr]5s^24d^1$			
4	Be	[He]2s ²	40	Zr	$[Kr]5s^24d^2$			
5	В	$[He]2s^{2}2p^{1}$	41	Nb	$[Kr]5s^{1}4d^{4}$			
6	С	$[He]2s^{2}2p^{2}$	42	Mo	[Kr]5 <i>s</i> ¹4 <i>d</i> ⁵			
7	N	$[He]2s^{2}2p^{3}$	43	Тс	$[Kr]5s^24d^5$			
8	0	$[He]2s^{2}2p^{4}$	44	Ru	[Kr]5 <i>s</i> ¹ 4 <i>d</i> ⁷			
9	F	$[He]2s^{2}2p^{5}$	45	Rh	$[Kr]5s^{1}4d^{8}$			
10	Ne	$[He]2s^{2}2p^{6}$	46	Pd	[Kr]4 <i>d</i> ¹⁰			
11	Na	[Ne]3s ¹	47	Ag	$[Kr]5s^{1}4d^{10}$			
12	Mg	[Ne]3s ²	48	Cd	$[Kr]5s^24d^{10}$			
13	AI	$[Ne]3s^23p^1$	49	In	$[Kr]5s^{1}4d^{10}5p^{1}$			
14	Si	$[Ne]3s^23p^2$	50	Sn	$[Kr]5s^{1}4d^{10}5p^{2}$			
15	Р	$[Ne]3s^23p^3$	51	Sb	$[Kr]5s^{1}4d^{10}5p^{3}$			
16	S	$[Ne]3s^23p^4$	52	Те	$[Kr]5s^{1}4d^{10}5p^{4}$			
17	CI	$[Ne]3s^23p^5$	53	1	$[Kr]5s^{1}4d^{10}5p^{5}$			
18	Ar	$[Ne]3s^23p^6$						
19	к	$[Ar]4s^{1}$						
20	Ca	$[Ar]4s^2$						
21	Sc	$[Ar]4s^23d^1$						
22	Ті	$[Ar]4s^23d^2$			• •			
23	V	$[Ar]4s^23d^3$		I				
24	Cr	$[Ar]4s^23d^5$	1	MN AT	C IN LIAATKA			
25	Mn	$[Ar]4s^23d^5$						
26	Fe	$[Ar]4s^23d^6$	1 4 4		J III LICCUV			
27	Co	$[Ar]4s^23d^7$						
28	Ni	$[Ar]4s^23d^8$						
29	Cu	$[Ar]4s^23d^{10}$						
30	Zn	$[Ar]4s^23d^{10}$						
31	Ga	$[Ar]4s^23d^{10}4p^1$						
32	Ge	$[Ar]4s^23d^{10}4p^2$			σιικατιση			
33	As	$[Ar]4s^23d^{10}4p^3$						
34	Se	$[Ar]4s^23d^{10}4p^4$						
35	Br	$[Ar]4s^23d^{10}4p^5$			v			
36	Kr	$[Ar]4s^23d^{10}4p^6$						

Unpaired Electrons

- Unpaired electrons are important.
- If an element has unpaired electrons, it is paramagnetic and attracts a magnet.
- If an element has no unpaired electrons it is diamagnetic and does not attract a magnet.

Exceptions to the electronic configurations

Following the rules for Cr, Cu, Ag, and Au using noble gas notation we expect the following:

Element	Expected	Experimental
Cr	[Ar] 3d ⁴ 4s ²	[Ar] 3d ⁵ 4s ¹
Cu	[Ar] 3d ⁹ 4s ²	[Ar] 3d ¹⁰ 4s ¹
Ag	[Kr] 4d ⁹ 5s ²	[Kr] 4d ¹⁰ 5s ¹
Au	[Xe] 5d ⁹ 6s ²	[Xe] 5d ¹⁰ 6s ¹

	1A 1																	8A 18
Core	1 H 1s ¹	2A 2											3A 13	4A 14	5A 15	6A 16	7A 17	2 He 15 ²
[Hc]	3 Li 2s ¹	4 Be 25 ²												$ \begin{array}{c} 6 \\ C \\ 2 s^2 2 \rho^2 \end{array} $	7 N 25 ² 2p ³	8 0 2s ² 2p ⁴	9 F 2s ² 2p ⁵	10 Ne 2s ² 2j
[Ne]	11 Na ³⁵¹	12 Mg 3s ²	3B 3	4B 4	5B 5	6B 6	7B 7	, 8	8B 9	10	1B 11	2B 12	13 Al 35 ² 3p ¹	14 Si 3s²3p²	$15 \\ P \\ 3s^2 3p^3$	16 S 3s ² 3p ⁴	17 Cl 3s ² 3p ⁵	18 Ar 3s²3p
[Ar]	19 K 45 ¹	20 Ca 45 ²	$21 \\ Sc \\ 3d^{1}4s^{2}$	22 Ti 3d ² 45 ²	23 V 3d ³ 4s ²	24 Cr 3d ⁵ 45 ¹	25 Mn 30 ⁵ 45 ²	26 Fe 3d ⁸ 4s ²	27 Co 3d ⁷ 4s ²	28 Ni 3d ⁸ 4s ²	29 Cu 3d ¹⁰ 4s ¹	30 Zn 31 ¹⁰ 432	$31 \\ Ga \\ 3d^{10}4s^2 \\ 4p^1$	$32 \\ Ge \\ 3d^{10}4s^2 \\ 4p^2$	33 As $3d^{10}4s^2$ $4p^3$	$34 \\ Se \\ 3d^{10}4s^2 \\ 4p^4$	$35 \\ Br \\ 3d^{10}4s^2 \\ 4p^5$	36 Kr $\mathcal{M}^{10}4_{2}$ $4p^{6}$
[Kr]	37 Rb 5s ¹	38 Sr 55 ²	39 Y 4d ¹ 5s ²	$40 \\ Zr \\ 4d^25s^2$	41 Nb 4d ³ 5s ²	42 Mo 4d ⁵ 5s ¹	43 Tc 4 <i>d</i> ⁵ 5s ²	44 Ru 4d ⁷ 5s ¹	45 Rh 4d ⁸ 5s ¹	46 Pd 4d ¹⁰	47 Ag 4d ¹⁰ 5s ¹	$48 \\ Cd \\ 4d^{10}5s^2$	49 In $4d^{10}5s^2$ $5p^1$	$50 \\ Sn \\ 4d^{10}5s^2 \\ 5p^2$	51 Sb 4d ¹⁰ 5s ² 5p ³	$52 \\ Te \\ 4d^{10}5s^2 \\ 5p^4$	53 I 4d ¹⁰ 5s ² 5p ⁵	54 Xe 4d ¹⁰ 5: 5p ⁶
[Xe]	55 Cs 65 ¹	56 Ba 65 ²	71 Lu 4f ¹⁹ 5d ¹ 65 ²	$72 \\ Hf \\ 4f^{11}5d^2 \\ 6s^2$	73 Ta $4f^{11}5d^3$ $6s^2$	$74 \\ W \\ 4f^{14} \overline{M}^4 \\ 6s^2$	75 Re 4/ ¹¹ 5d ⁵ 6s ²	76 Os 4f ¹⁴ 5d ⁶ 66 ²	$77 \\ Ir \\ 4f^{14}5d^7 \\ 6e^2$	78 Pt 4 ^{f¹⁴5d⁹ 68¹}	79 Au 4f ¹⁴ 5d ¹⁰ 65 ¹	$80 \\ Hg \\ 4f^{14}5d^{10} \\ 6s^2$	81 Tl 4f ¹⁴ 5d ¹⁰ 65 ² 6p ¹	82 Pb 4f ⁻¹⁴ 5d ⁻¹¹ 65 ² 6p ²	83 Bi $4f^{14}5d^{11}$ $6s^{2}6p^{2}$	$84 \\ Po \\ 4f^{14}5d^{10} \\ 6s^26p^4$	85 At $4f^{14}5d^{10}$ $6s^26p^5$	86 Rn 4 ^{f14} 5d 68 ² 69
[Rn]	87 Fr ⁷⁵¹	88 Ka 7s ²	103 Lr 5f ¹⁴ 6d ¹ 7s ²	104 Rf 5f ¹⁴ 6d ² 7s ²	105 Db 5f ¹⁴ 6d ³ 7s ²	106 Sg 5f ¹⁴ 6d ⁴ 7s ²	107 Bh 5f ¹⁴ 6d ⁵ 7s ²	108 Hs 5f ¹⁴ 6d ⁶ 7s ²	109 Mt 5f ¹⁴ 6d ⁷ 7s ²	110	111	112		114		116		
Lanthanide [Xe] series		57 La 3d ¹ 6s ²	58 Ce 4f ¹ 5d ¹ 65 ²	59 Pr 4f ³ 6s ²	60 Nd 4 ⁷ 6s ²	61 Pm 4/ ⁵ 6s ²	62 Sm 4 ^{f⁶6s²}	63 Eu 4 ⁷ 6s ²	$64 \\ Gd \\ 4f''5d' \\ 6s''$	65 Tb 4 ^{f⁹6s²}	66 Dy 4 ^{f¹⁰6s²}	67 Ho 4 ^{f¹¹6s²}	68 Er 4 ^{f¹²6s²}	69 Tm 4f ¹³ 6s ²	70 Yb 4 ^{f¹⁴6s²}			
[Kn]	Actinide series ശ]			89 Ac 6d ¹ 7s ²	90 Th 6d ² 7s ²	91 Pa $5f^{2}_{7s^{2}}$	92 U 5f ³ 6d ¹ 7s ²	93 Np 5/46d ¹ 7s ²	94 Pu 5f ⁶ 7s ²	95 Am 5f ⁷ 7s ²	96 Cm ⋽ ⁷ 64 ¹ 7≈ ²	97 Bk 5f ⁹ 7s ²	98 Cf 5f ¹⁰ 7s ²	99 Es 5f ¹¹ 7s ²	100 Fm 5f ¹² 7s ²	101 Md 5f ¹³ 7s ²	102 No 5f ¹⁴ 7s ²	
[Khj			N	/letals	752	⁷ 7s ² Meta	1782 Illoids		Noru	⁷ 75 ² metals			-	-				